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Domains of attraction and the density of static metastable 
states in single-pattern iterated neural networks 
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Abstract .  I calculate, for a single-pattw iterated neural network, the density of 
static metastable states, a,V/&, as a fundion of the field distribution and the sym- 
metry of the synaptic matrix. The features of this function stmn$y suggest that the 
boundary upon which this density vanishes gives the critical overlap for the memory 
state. i.e. gives a meas- of the size of ita domain of attrsction. This heuristic in- 
terpretation is shown to agree with the exact result for vanishing symmetry, the only 
case where a direct calculation CM he performed. I explicitly calculate critical over- 
laps as a function of symmetry and mean field strength when the field distribution 
is II delta-function and when it is a unit-width Gaussian. 

1. Introduction 

Spin-glass inspired neural networks [1,2] have been used as a paradigm for auto- 
associative memory, in which an initial condition (an input state) containing partial 
or noisy information on one of the memorized patterns evolves via the system dynamics 
t o  the completed pattern. In other words, the memorized patterns are attractors. The 
system is comprised of N Ising-valued (+1 or -1) neural elements interacting through 
the ‘synaptic’ coupling matrix J. The state of the system at  time t is represented by 
the vector S(t) ,  and evolves according to the dynamics given by 

The overlap of two states S’ and Sz gives a measure of their similarity, or proximity 
in phase space, and is simply their normalized dot-product 

If the system has learned p memory patterns {C’},,=l,2,,,,,,, that is, the C’ have 
been made fixed points of equation (l), then a question of substantial importance 
is: how large an overlap with a given memory state E* is required of a n  initial state 

t Present address: Biolosy Department, Brandeb University, Waltham, MA 02254. USA. 
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to ensure that it evolves to (I? What is the size of the domain of attraction? The 
domain of attraction for the fixed point 6' is defined as the set of all those initial 
states that flow to 6' after sufficient time. The work of Forrest [3] suggests that 
this question is sensible; there is a critical value, m,, of the overlap such that almost 
all initial states with ma > m, will flow to the memory-state, and almost all the 
rest will not. A direct determination of the domains of attraction would require a 
calcnlation of the sequence of functions m,(mo) giving the overlap at the nth time 
step as a function of the initial overlap and then finding the limit m n -+ CO. For the 
special case where J is separable (11 (the so-called Hebb matrix) Gardner et  al [4] have 
laid out this calculation and have given explicit results for n = 1 and n = 2. Beyond 
this, the number of order parameters increases dramatically and immediately becomes 
prohibitive. So even in this restricted and relatively simple case, a direct approach is 
hopeless. 

Kepler and Abbott [5] have calculated the overlap after one time step as a function 
of the initial overlap for any matrix J. This function is given by 

where H is defined by 

By analogy with spin systems I have defined the field slmnglhs $', by 

and p(y) is the distribution function for these fields over the sites i (for the fixed point 
under discussion). Note that a state is stable if and only if its field at each site is 
positive. 

This calculation is not readily extended to subsequent time steps. The reason for 
this and the reason for the rapid multiplication of order parameters in the Gardner cal- 
culation are the same. The average over initial states S(0) satisfying m(S(O), 6') = m, 
can be performed without difficulty because these states are statistically independent. 
The states S(l), however, are not independent, but have acquired correlations in the 
dynamics through correlations within J. 

It is an interesting, directly observable feature of neural networks that the system 
may initially flow toward the memory state (m, increasing), but then after some time, 
flow away (m, decreasing). So in general, one may not write 

m,+,(m,) = ml(m,(mo)). (6) 

The only case where no flow reversal of this type occurs, and where equation (6) is 
valid, is when the matrix symmetry 0, defined by 
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vanishes [6]. I t  is also known that in this case the number of static metastable stales no 
longer scales as eaN, but, is at  most polynomial in N (see below). Static metastable 
states, or spurious fixed points, are those states which are fixed points under the 
dynamics of equation (l), but which are not desired memory states. There is sig- 
nificance in the correlation between the existence of static metastable states and the 
non-iterative nature of the overlap dynamics. It usually is the case that those initial 
points which move first toward the memory state and then away from it get stuck 
in one of the metastable states; the metastable states impede flow to the attractor. 
The spin-glass phase described in the thermodynamic analysis of Amit et  a/ [7] is a 
manifestation of this effect. 

This close connection between flow restriction and static metastable states suggests 
that  a study of the density of static metastable states over m with analysis of its 
dependence on the distribution function, p, and the symmetry, U ,  may prove frnitfult. 

Some previous results on the distribution of metastable states are available. I t  is 
well known from spin-glass theory [8] that the number, N ,  of metastable states for 
a ‘typical’ symmetric matrix (one whose entries above or below the main diagonal 
are independent and distributed normally) is exponentially large, N = exp(O.lSSN), 
and that this is self-averaging; for N - cc almost every matrix gives this result and 
therefore, so does the average over such matrices. This calculation can be extended 
to arbitrary symmetry [9], and one sees the typical decrease of N as U decreases. 

Gardner [lo] extended this approach to look at the dependence of N on m for the 
separable Hopfield-Hebb model in order to investigate the structure of the attractors, 
which in this case are not the memory patterns themselves, but instead, are clustered 
around them. ’Iteves and Amit [ll] calculated the density of static metastable states 
in  asymmetrically diluted Hopfield-Hebb networks to determine the effectiveness of 
such a dilution for suppressing the spin-glass phase. 

Krauth, Nadal and Mhzard [6] introduced the singlepattern iterated neural net- 
work (SPINN), in which a single memory pattern is learned and the matrix symmetry 
is constrained to some specified value (the matrix is otherwise random) to investigate 
the effect of asymmetry on domain size. To this system, they applied Gardner’s tech- 
nique for calculating overlap dynamics and were able to calculate the overlap functions 
out to four time steps before the explosion of order parameters proved overwhelming. 
They also performed numerical simulations and found that symmetry does indeed play 
a dominant role in determining domain size. 

I have adopted their system and will calculate the density dN/dm of static 
metastable states for a SPINN with arbitrary field distribution, p,  and symmetry, U. 

2. The density of static metastable states 

For a given matrix, J, the number of states stable to singlespin flips is 

N N 

N(J) = Tr, n 0 (Si JijS,) 
i = l  j=1 

t There are, of come,  nomatatic metastable states, i.e. limit cycles. in asymmetric networks, and 
their presence may affect the retried of memory state.  Nevertheleis. the heuristic motivations 
above refer specifiedly to the static states, and since the consideration of stable limit cycle of 
arbitrary length would render the problem intractable, I will restrict my attention to the study of 
static metastable states. 
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I will average this quantity with the appropriate measure on matrix space to get the 
typical number of static metastable states 

The measure is chosen by introducing the matrix T related to J by 

where a is related to U through 

I impose on T the normalization condition 

N 
= N 

j=1  

and choose the matrices with the pr ior  probability f(7) on the fields associatied with 
each matrix. The function f is introduced here simply to make the calculation easier 
to formulate and will be eliminated in favour of the physically relevant distribution p 
shortly (see [12]). I will make the convenient gauge choice of letting the single pattern 
be ferromagnetic, i.e. Si = +1 for each i, so that 

N 1 7i = - J . .  
$1 di7 j = 1  

Now the matrix distribution function P is given by 

where C,[f] is a normalization constant, calculated to be 

exp(-iz2) dx \) 
I .  j ( x  - ow)  

..( 1 1 1 

J f i  C,,,ifj = exp N L - ~  + 5w- - iog 

The order parameter w is given by its saddle-point equation 

exp(- fx2)dx 
w - -log( a J f (x  - ow) )  = 0. Jz;; l3W 

Now p is related to f by 
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so 

Note that in equation (9), h' is invariant under a rescaliug of f .  Therefore, in that  
equation, one may use equation (17) to replace f(y) by p(y)exp[f(y - uw)'].  Equa- 
tion (16) becomes 

U 

w=-- 1 + (19) 

where the angle brackets denote averaging over y using p ( 7 ) :  

(9(Y))? JdYP(Y).(Y). (20) 

The calculation of equation (9) is performed by making repeated use of the Fourier 
representation of the deita iunction 

to introduce several order parameters including the overlap with the single (ferromag- 
netic) memory state 

The resulting integral factorizes over sites, leaving an expression whose evaluation by 
saddle-point integration becomes exact as N - 00. 

Let F(m) be defined by 
dn7 MP,"., _ -  - e"' \".I 
dm 

Then 
1 1 1 1 F(m)  = --u2t2 + t(s  + mu%) - -(I + u2)u2 - - v 2  + -(I  + u2)w2 2 2 2 2  

-log(?)) J 

where the subscripted angle brackets denote averages over the subscript variable as 
above for y and 

The order parameters s , t ,  U and v are given by saddle-point equations, e.g. 

(26) 
- rm(y  + a(u - rt))  + u(u + rs)  

v f i T i 7  
etc. w is still given by equation (19). 

It should be noted that F ( m )  is not self-averaging over all parameter space, and so 
the calculation given here must, strictly speaking, be interpreted as providing an upper 
bound on the value of F ( m )  rather than the typical value itself. This said, I believe 
it unlikely that the features of importance in the following are misrepresentented in 
this approximation. 
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3. Discussion 

Equation (24) is the main result of the computational part of this paper. But in this 
general form, it leaves little for one’s intuition to grasp. One can get a feeling for its 
content by evaluating it for specific functions in the place of p. The two that I will 
consider are 

These choices are made because they are the field distributions for two well known 
matrix learning rules (the former is that of the pseudo-inverse matrix [13] and the 
latter, that  of the Hebb matrix) and though their properties when lyol is large may be 
expected to be similar, they have strongly contrasting behaviour when (yo( is small. 
As yo passes through zero from below, the pattern with the delta-function distribution 
suddenly becomes stable, whereas the pattern with the normal Gaussian distribution 
becomes stable only asymptotically. The value of these considerations will be evident 
when I analyse the features of equation (24) thus constrained. 

The former choice yields 

where 
p = m2 - u2(1 - m2). 

The latter gives, quite simply 

2 logH(uu - ‘my,) -log 

F(m) for the delta-function distribution is plotted in figure 1 for two values of yo 
and of U. F begins, at m = 0, at  some positive value (this value depends on U, but not 
on p ) ,  and then declines, cut off by the phase space term. For yo positive, the curve 
reverses direction, increases and becomes positive, reaches a maximum, and crosses 
back through zero and then remains negative. Referring to equation (23), note that 
for N large, one expects to find static metastable states where F is positive. Where 
it is negative we expect none. 

The appearance of a band of metastable states at values of m near 1 may be 
thought of as resulting from the ‘energetically’ favourable condition of being near the 
stable state. However, it is apparently not good to be too close, perhaps because one 
is then in the domain of altrnction of the stable state, and metastable states cannot 
exist here. This suggests that the boundary of this band may coincide reasonably well 
with the edge of the attractor’s domain. But one must be aware that even when the 
density is exponential in N, the fraction of metastable states among all states may 
be vanishingly small as N -+ 03. A direct and unambiguous interpretation in these 
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m 

Figure 1. ApIotofF(=(l/N)log(aN/am))agai~t mforthecasep(7) = 6(7-m). 
Curve a. U = 1,  = 0.4; m v e  b, n = 0.2,70 = 0.4; cwve  c, U = 1,  yo = -0.4. 

terms is thus precluded. I wiii examine this somewhat further beiow. Nevertheiess it 
seems reasonable to analyse the boundary where static metastable states disappear. 
Thus, one is led to study mc(yo, U), the zeros of F .  

Figures 2 and 3 plot the locus of the zeros of F(m) as a function of yo for U = 0.2 
and U = 1. These curves bound the region where F is positive. For the delta-function 
distribution, figure 2, one sees m, increase with yo for yo negative, and then suddenly 
at yo = 0 a second band oimetastabie states appears. r i i is  band widens as yo increases 
but both edges recede from m = 1. I suggest that the recession of the upper edge is 
due to the growth of the memory state's domain of attraction at  the expense of nearby 
metastable states. At higher values of yo, the t w o  bands fuse into one. 

A comparison of figures 2 and 3 lends some support to this supposition. Figure 3 
gives m,(yo) for the Gaussian distribution given above. There is no sudden appearance 
UI a "a'," U, '1 ICba)La" IL-  JbaLc.J, ""L 111JCV:a" LIIC: reg,",, 
simply encroaches upon larger m smoothly as yo increases. In particular, the upper 
edge of this band never recedes. The memory state is not stable in this case, and 
therefore has no domain of attraction to  devour the metastable states. Above some 
u-dependent critical value of yo, however, the band of metastable states splits. The 
upper band narrows and both of its boundaries approach m = 1 asymptotically while 

become the attractor in lieu of a stable memory state. And now the recession of 
the lower band is a response to the increasing domain size of this attractor. Note 
in passing that the joining of the two bauds for yo below the critical value is closely 
related to the phase transition where recall gives way to the spin-glass phase in the 
thermodynamics of the Hopfield-Hebb network [lo]. For the comparable system here 

ta'.ing = 1) ?hiB vz!ue, from figure 3, is v. - 9 1 4 . .  . cGmpared 
yo = 2.68 ... in the Hopfield-Hebb case [7]. Ilexpect these numbers to be similar, 
but not identical. Gardner's computation, done specifically for the Hopfield-Hebb 
construction, found that the bands split at  a capacity corresponding to yo = 3.02, 
rather than the value of 2.68 at  which retrieval fails. The further difference found here 
is likely due to the Hopfield-Hebb matrix being a rather unusual (and sub-optimal) 

-c. L~~ I ~ r ~ ~ ~ ~ l - - l . L 1 .  - I ~ . ~ -  L ~ ~ I  :-.*.. 3 & I ~ ~  ... L . . ~  ~ ~ - ~ . - - & . L , .  .... 
W l L t x C  'lleba)aa"rr: sbabrs occur 

&h- h -1 -P &h- I -...-_ h---1 --A..-l-- 'FL- ..-- ~- h".A -C -A+mo+nhln "+-A-- I.-- 
11115 ""u,,"aLJ ", U,= L"Wc.I va.1111 IrjbrUrU. 111c "ppF' "Oll" ", I I L . = Y I w Y O " L C  DY*bc.J ,,- 

,U - "'-I 
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m 

o n  :I 
- 1  0 1 2 3 4 5 

Figure 2. Thelocusof thezerosofF(m)forp(y) = 6(y-y0). Themrvesarelabelled 
by the value of U used. The region between the two curves with the same label is the 
region where static metastable states exist. This region narmws with decresing U 

and vanishe as the cwves collapse into one at (I = 0. By the interpretation advanced 
hen,  the rightmost curve gives the critical owrlap for the domain of attraction. 

1.0 

0.8 

0.6 

m 
0.4 

0.2 

0.0 I I I 
-1 0 1 2 '  3 4 5 

7 0  

Figure 3. As figure 2, but for p(y) = (l/&) ex++(-, - ro) ' ] .  

member of the class of symmetric standard Gaussian matrices [12]. 
In further support of my interpretation of these features, I would like to consider 

the case U = 0. Here the width of the band shrinks to zero, but its limiting location 
is still well defined. This case is of interest because it is the one instance where 
one does know the domain size [6] .  It is given simply by the unstable fixed point 
of equation (6), where the function m,(mo) is given by equation (3). Going back to  
general p and equation (24), note that equation (26) shows that vanishing U implies 
that s , t , u ,  U and w likewise vanish, and 1 have that 
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+'-"[log(H( 2 d r z  my )>,-log(?)] 

I t  is easy to  see that the fixed point of equation (3), when inserted in equation (32), 
causes the vanishing of each bracketed term separately, and obviously gives F = 0. 
That is, the two methods agree when U = 0. 

When U is not zero, one must turn to numerical simulation. Figure 4 shows 
a comparison of the critical overlap as calculated in the foregoing, and computer 
simulations of a 100-node network. The data  was obtained using matrices trained on 
a variant of the perceptron learning algorithm (141 that  produces matrices with sharply 
peaked field distributions, and large but not perfect symmetry. I have therefore used 
equation (29) with U = 0.9 for this comparison. Also included in this figure is a curve 
giving the prediction of the phenomenological rule of [5]. The agreement here is not 
unreasonable, though in and of itself, it provides less than complete confirmation. 
There is, however, some difficulty in interpreting numerical results of this type; for 
finite N the domain boundaries are not sharp, and there is some arbitrariness in 
choosing how to locate m,. For the data presented here, I took m, to be the value at  
which 90% of initial points make it to the memory state. Taking this fraction to be 
100% adds significantly to the value of m, at intermediate values of yo. Bearing in 
mind the caveat expressed in the discussion following equation (31), for finite N one 
might expect, and does indeed see, a small region of overlap between the measured 
domain and the area supporting static metastable states. This may he taken into 
account by imagining the flow toward the memory pattern of an initial state located 
in the region containing the static metastable states as a percolation process, with 
initial states located just within the edge of the metastable region having a non-zero 
probability of escape to  the memory pattern. This would require one to account for 
the domains of attraction of the metastable states themselves, but would likely prove 
both informative and interesting. 

0.6  U,. \ 

0.0 1 I 
0 1 2 3 4 5 

YO 

Figure 4. A comparison of m, computed LLS the locus of zems for F(m) (fuU curve), 
M computed by the phenomenologicd rule of [5] (dotted curve). and as numerically 
determined (open circles). For the first calculation I have used the delta function 
field distribution, and o = 0.9. For the numerical data (from [SI) one hsa N = 100. 

In conclusion, I have related the distribution of static metastable states to the 
domain of attraction of the attractor in a singlepattern neural network. The analysis 
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suggests that the boundary of the region which supports metastable states also demar- 
cates the boundary of the domain of attraction of the memorized pattern, in the sense 
that all points in this domain flow to the memory state, although a non-negligible 
fraction of those outside it may likewise complete the pattern successfully. 
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